KCa channel insensitivity to Ca2+ sparks underlies fractional uncoupling in newborn cerebral artery smooth muscle cells.
نویسندگان
چکیده
In smooth muscle cells, localized intracellular Ca2+ transients, termed "Ca2+ sparks," activate several large-conductance Ca2+-activated K+ (KCa) channels, resulting in a transient KCa current. In some smooth muscle cell types, a significant proportion of Ca2+ sparks do not activate KCa channels. The goal of this study was to explore mechanisms that underlie fractional Ca2+ spark-KCa channel coupling. We investigated whether membrane depolarization or ryanodine-sensitive Ca2+ release (RyR) channel activation modulates coupling in newborn (1- to 3-day-old) porcine cerebral artery myocytes. At steady membrane potentials of -40, 0, and +40 mV, mean transient KCa current frequency was approximately 0.18, 0.43, and 0.26 Hz and KCa channel activity [number of KCa channels activated by Ca2+ sparksxopen probability of KCa channels at peak of Ca2+ sparks (NPo)] at the transient KCa current peak was approximately 4, 12, and 24, respectively. Depolarization between -40 and +40 mV increased KCa channel sensitivity to Ca2+ sparks and elevated the percentage of Ca2+ sparks that activated a transient KCa current from 59 to 86%. In a Ca2+-free bath solution or in diltiazem, a voltage-dependent Ca2+ channel blocker, steady membrane depolarization between -40 and +40 mV increased transient KCa current frequency up to approximately 1.6-fold. In contrast, caffeine (10 microM), an RyR channel activator, increased mean transient KCa current frequency but did not alter Ca2+ spark-KCa channel coupling. These data indicate that coupling is increased by mechanisms that elevate KCa channel sensitivity to Ca2+ sparks, but not by RyR channel activation. Overall, KCa channel insensitivity to Ca2+ sparks is a prominent factor underlying fractional Ca2+ spark uncoupling in newborn cerebral artery myocytes.
منابع مشابه
KCa channel insensitivity to Ca sparks underlies fractional uncoupling in newborn cerebral artery smooth muscle cells
Li, Anlong, Adebowale Adebiyi, Charles W. Leffler, and Jonathan H. Jaggar. KCa channel insensitivity to Ca sparks underlies fractional uncoupling in newborn cerebral artery smooth muscle cells. Am J Physiol Heart Circ Physiol 291: H1118–H1125, 2006. First published April 7, 2006; doi:10.1152/ajpheart.01308.2005.—In smooth muscle cells, localized intracellular Ca transients, termed “Ca sparks,” ...
متن کاملFunctional Coupling of Ryanodine Receptors to KCa Channels in Smooth Muscle Cells from Rat Cerebral Arteries
The relationship between Ca2+ release ("Ca2+ sparks") through ryanodine-sensitive Ca2+ release channels in the sarcoplasmic reticulum and KCa channels was examined in smooth muscle cells from rat cerebral arteries. Whole cell potassium currents at physiological membrane potentials (-40 mV) and intracellular Ca2+ were measured simultaneously, using the perforated patch clamp technique and a lase...
متن کاملMitochondria-derived reactive oxygen species dilate cerebral arteries by activating Ca2+ sparks.
Mitochondria regulate intracellular calcium (Ca2+) signals in smooth muscle cells, but mechanisms mediating these effects, and the functional relevance, are poorly understood. Similarly, antihypertensive ATP-sensitive potassium (KATP) channel openers (KCOs) activate plasma membrane KATP channels and depolarize mitochondria in several cell types, but the contribution of each of these mechanisms ...
متن کاملHypoxia reduces KCa channel activity by inducing Ca2+ spark uncoupling in cerebral artery smooth muscle cells.
Arterial smooth muscle cell large-conductance Ca(2+)-activated potassium (K(Ca)) channels have been implicated in modulating hypoxic dilation of systemic arteries, although this is controversial. K(Ca) channel activity in arterial smooth muscle cells is controlled by localized intracellular Ca(2+) transients, termed Ca(2+) sparks, but hypoxic regulation of Ca(2+) sparks and K(Ca) channel activa...
متن کاملGenetic ablation of caveolin-1 modifies Ca spark coupling in murine arterial smooth muscle cells
Cheng, Xiaoyang, and Jonathan H. Jaggar. Genetic ablation of caveolin-1 modifies Ca spark coupling in murine arterial smooth muscle cells. Am J Physiol Heart Circ Physiol 290: H2309–H2319, 2006. First published January 20, 2006; doi:10.1152/ajpheart.01226.2005.—Ltype, voltage-dependent calcium (Ca ) channels, ryanodine-sensitive Ca release (RyR) channels, and large-conductance Ca activated pota...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 291 3 شماره
صفحات -
تاریخ انتشار 2006